Cyclopentadienyl Complexes of Uranium(iv) Chlorides. Crystal Structures of Trichloro(η^{5}-cyclopentadienyl)bis(triphenylphosphine oxide) uranium (iv) Tetrahydrofuran Solvate and of Trichloro(η^{5}-cyclopentadienyl)bis(hexamethylphosphoramide)uranium(IV) \dagger

Kenneth W. Bagnall
Chemistry Department, The University of Manchester, Manchester M13 9PL
Franco Benetollo*
Istituto di Chimica e Tecnologia dei Radioelementi del C.N.R., 35100 Padova, Italy
Gabriella Bombieri
Dipartimento di Chimica Inorganica e Struttura Molecolare, Università di Messina, 98100 Messina, Italy Giovanni De Paoli
Istituto di Chimica Generale, Università di Padova, 35100 Padova, Italy

The crystal and molecular structures of $\left[\mathrm{U}(\mathrm{cp}) \mathrm{Cl}_{3}\left(\mathrm{PPh}_{3} \mathrm{O}\right)_{2}\right] \cdot$ thf (thf = tetrahydrofuran) (1) and [$\mathrm{U}(\mathrm{cp}$)$\left.\mathrm{Cl}_{3}\left\{\mathrm{P}\left(\mathrm{NMe}_{2}\right)_{3} \mathrm{O}\right\}_{2}\right]$ ($\mathrm{cp}=\eta^{5}$-cyclopentadienyl) (2) have been determined from three-dimensional X-ray diffraction data. The compounds crystallize in space groups $P 2_{1} / c(1)$ and $P 2_{1} / n(2)$, with $a=21.725(5)$, $b=11.699(2), c=17.269(4) \AA, \beta=97.9(2)^{\circ}$, and $Z=4$ for (1), and $a=9.942(6), b=32.005(15)$, $c=9.576(6) \AA, \beta=106.3(1)^{\circ}$, and $Z=4$ for (2). The structures were solved by Patterson and Fourier methods and refined by least squares to final R values of 0.054 for 3888 independent reflections for (1) and 0.032 for 3777 independent reflections for (2). In both compounds the uranium atom is octahedrally co-ordinated with the two neutral ligands [$\mathrm{PPh}_{3} \mathrm{O}$ and $\mathrm{P}\left(\mathrm{NMe}_{2}\right)_{3} \mathrm{O}$] in cis positions; the chlorine atoms are in the mer arrangement and the cyclopentadienyl group is trans to one neutral ligand. The appearance of cis octahedral geometry in complexes of the type $\left[\mathrm{U}(\mathrm{cp}) \mathrm{Cl}_{3} \mathrm{~L}_{2}\right.$] is discussed in terms of the operation of a possible trans effect.

Complexes of composition [$\left.\mathrm{U}(\mathrm{cp}) \mathrm{Cl}_{3} \mathrm{~L}_{x}\right]\left[\mathrm{cp}=\eta^{5}\right.$-cyclopentadienyl; $x=2, \mathrm{~L}=\mathrm{PPh}_{3} \mathrm{O}$ or $\mathrm{P}\left(\mathrm{NMe}_{2}\right)_{3} \mathrm{O}$] have been recently reported. The structures of the analogous compounds [$\mathrm{UCl}_{4} \mathrm{~L}_{2}$] have demonstrated a cis disposition of the $\mathrm{PPh}_{3} \mathrm{O}$ ligands in $\left[\mathrm{UCl}_{4}\left(\mathrm{PPh}_{3} \mathrm{O}\right)_{2}\right]^{1}$ while a trans arrangement of hexamethylphosphoramide ligands is reported for [UCl_{4} $\left.\left\{\mathrm{P}\left(\mathrm{NMe}_{2}\right)_{3} \mathrm{O}\right\}_{2}\right]^{2}$.
The structure analyses of the title compounds have been undertaken with the aim to clarify the conformational changes induced by the substitution of the chlorine atom with the bulkier cp ligand in the precursors [$\mathrm{UCl}_{4} \mathrm{~L}_{2}$]. A preliminary account has been reported elsewhere ${ }^{3,4}$ and the full results are described in this paper together with a discussion of the unexpected cis geometry of the complexes.

Experimental

$\left[\mathrm{U}(\mathrm{cp}) \mathrm{Cl}_{3}\left(\mathrm{PPh}_{3} \mathrm{O}\right)_{2}\right] \cdot \operatorname{thf}(1)^{3}$ and $\left[\mathrm{U}\left(\mathrm{cp}^{2}\right) \mathrm{Cl}_{3}\left\{\mathrm{P}\left(\mathrm{NMe}_{2}\right)_{3} \mathrm{O}\right\}_{2}\right](2)^{4}$ were prepared by published methods.

X-Ray Measurements and Structure Determination.-The crystal and refinement data are summarized in Table 1. The X-ray intensity data were collected on a Philips pw 1100 fourcircle automated diffractometer with graphite-monochromated $\mathrm{Mo}-K_{\alpha}$ radiation. The unit cells were determined on the basis of 25 strong reflections found mounting the crystal at random, varying the orientation angles φ and χ over a range of 120° each with the detector position varying between $\theta=6$ and $\theta=10^{\circ}$. For the determination of precise lattice parameters 20 strong reflections with $9 \leqslant \theta \leqslant 14^{\circ}$ were considered.
The intensities of three standard reflections, monitored at

[^0]100 reflection intervals, showed no greater fluctuations than those expected from Poisson statistics. The intensity data were corrected for Lorentz-polarization effects, and for absorption following the method of North et al. ${ }^{5}$ The structures were solved using three-dimensional Patterson and Fourier techniques and refined by full-matrix least squares. The structure of complex (1) was refined with anisotropic thermal parameters assigned to all the atoms with the exception of the phenyl rings and the thf molecule. The phenyl rings were refined as rigid groups and restricted to their normal geometry ($D_{6 n}$ symmetry, $\mathrm{C}-\mathrm{C} 1.395 \AA$) using the group refinement procedure. Each ring was assigned six variable positional parameters and each ring carbon atom was assigned an individual isotropic thermal parameter. Hydrogen-atom contributions (for the phenyl and cyclopentadienyl groups) were used as fixed atoms in calculated positions ($d_{\mathrm{C}-\mathrm{H}}=$ $0.95 \AA$ and $B_{\text {iso. }}=6 \AA^{2}$). The structure of complex (2) was refined with anisotropic thermal parameters assigned to all non-hydrogen atoms, hydrogens were introduced as fixed atoms in calculated positions ($d_{\mathrm{C}-\mathrm{H}}=0.95 \AA$ and $B_{\text {iso. }}=5 \AA^{2}$). In all the refinements $w=1$ was used as it showed reasonable consistency in a test of $w \Delta^{2}$ for data sectioned with respect both to $\left|F_{0}\right|$ and to $\sin \theta / \lambda$.

The anomalous dispersion terms ${ }^{6}$ for U and P were taken into account in the refinement. Atomic scattering factors for \mathbf{U} and \mathbf{P} were from ref. 7, for the other non-hydrogen atoms from ref. 8, and for hydrogen atoms from ref. 9. Data processing and computation were carried out using the SHELX 76 program package. ${ }^{10}$ Final positional parameters for (1) and (2) are presented in Tables 2 and 3.

Results and Discussion

Figure 1 shows the stereochemistry of $\left[\mathrm{U}(\mathrm{cp}) \mathrm{Cl}_{3}\left(\mathrm{PPh}_{3} \mathrm{O}\right)_{2}\right] \cdot$ thf and Figure 2 that of the analogous $\left[\mathrm{U}(\mathrm{cp}) \mathrm{Cl}_{3}\left\{\mathrm{P}\left(\mathrm{NMe}_{2}\right)_{3} \mathrm{O}\right\}_{2}\right]$ with the atom numbering scheme. The relevant interatomic distances and bond angles are given in Tables 4 and 5 respect-

Table 1. Crystal data

Compound
Formul
M
Space group
Crys
a / \AA
b / \AA
c / \AA
β / \AA
U / \AA°
Z
$D_{\mathrm{c}} / \mathrm{g} \mathrm{cm}^{-3}$
F(000)
Radiation ($\lambda / \AA \AA$)
Reflections measured
Scan method
Scan speed/ $/{ }^{\circ} \min ^{-1}$
Scan width/ ${ }^{\circ}$
Background counts per s of counting time
$2 \theta_{\text {max. }} / l^{\circ}$
σ limit $[I>n \sigma(I)]$
Unique observed reflections
Weighting scheme, w
$R\left(=\Sigma\left[\left|F_{0}\right|-\left|F_{\mathrm{c}}\right|\right] /\left|F_{\mathrm{o}}\right|\right)$
$R^{\prime}=\left[\frac{\Sigma w| | F_{0}\left|-\left|F_{\mathrm{c}}\right|^{2}\right.}{\Sigma w\left|F_{0}\right|^{2}}\right]^{ \pm}$
$\mu\left(\mathrm{Mo}-\mathrm{K}_{\alpha}\right) / \mathrm{cm}^{-1}$
(1)

$\mathrm{C}_{45} \mathrm{H}_{39} \mathrm{Cl}_{3} \mathrm{O}_{3} \mathrm{P}_{2} \mathrm{U}$	$\mathrm{C}_{17} \mathrm{H}_{41} \mathrm{Cl}_{3} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{U}$
1034.1	767.9
$\boldsymbol{P} 2_{1 / c}$	$P 2_{1} / \boldsymbol{n}$
monoclinic	monoclinic
21.725(5)	9.942(6)
11.699(2)	32.005(15)
17.269(4)	9.576(6)
97.9(2)	106.3(1)
4347	2925
4	4
1.58	1.74
2024	1496
Mo- K_{α} (0.7107)	Mo- K_{α} (0.7107)
6028	6829
$\theta / 2 \theta$	0/20
3	1.5
1	1.25
20	10
46	50
$n=3$	$n=3$
3888	3777
$1.8014\left[\sigma^{2}\left(F_{0}\right)+0.001433\left(F_{0}\right)^{2}\right]^{-1}$	1
0.054	0.032
0.058	-
38.3	55.6

Table 2. Atomic co-ordinates ($\times 10^{4}$) with estimated standard deviations (e.s.d.s) in parentheses for (1)

Atom	x	y	z	Atom	x	y	z
U	2 465(0)	908(0)	2 666(0)	C(19)	$1373(5)$	-1424(10)	4 172(5)
$\mathrm{Cl}(1)$	1843 (2)	$2715(3)$	$2049(2)$	C(20)	$1477(5)$	-2375(10)	4 660(5)
$\mathrm{Cl}(2)$	3 046(2)	2 174(3)	3 814(3)	C(21)	$1426(5)$	-2277(10)	5453 (5)
$\mathrm{Cl}(3)$	1 664(2)	-610(3)	$1967(2)$	C(22)	1270 (5)	- 1229 (10)	$5759(5)$
$\mathrm{P}(1)$	1 122(2)	802(3)	3822 (2)	C(23)	1 166(5)	-278(10)	5 271(5)
$\mathrm{P}(2)$	3 203(2)	-1379(3)	$4057(2)$	C(24)	2 897(4)	-2 790(7)	3 872(5)
$\mathrm{O}(1)$	$1715(4)$	954(7)	3 450(5)	C(25)	2 481(4)	-2 965(7)	3 192(5)
$\mathrm{O}(2)$	$2832(4)$	-548(7)	$3511(5)$	C(26)	$2231(4)$	-4049(7)	3 020(5)
O(3)	$4787(15)$	-1585(28)	601(19)	C(27)	2396 (4)	-4957(7)	3 530(5)
C(1)	2981 (10)	154(20)	1371 (14)	C(28)	$2811(4)$	-4 783(7)	4210 (5)
C(2)	3 401(11)	-164(20)	$2006(14)$	C(29)	$3062(4)$	-3699(7)	4382 (5)
C(3)	3 662(8)	879(23)	$2349(11)$	C(30)	3 998(5)	$-1389(7)$	3 917(6)
C(4)	3 380(8)	1756 (16)	$1879(11)$	C(31)	4 290(5)	-2 337(7)	3 639(6)
C(5)	$2935(9)$	1340 (18)	$1302(11)$	C(32)	4918 (5)	-2 283(7)	3548 (6)
C(6)	980(4)	2 084(9)	4321 (7)	C(33)	5 253(5)	-1281(7)	3 736(6)
C(7)	385(4)	2326 (9)	$4492(7)$	C(34)	4 961(5)	-333(7)	$4014(6)$
C(8)	285(4)	3 283(9)	4941 (7)	C(35)	4 334(5)	-387(7)	4 104(6)
C(9)	781(4)	3 996(9)	5 219(7)	C(36)	3 197(4)	-981(8)	5 051(5)
C(10)	$1377(4)$	3 754(9)	5 048(7)	C(37)	$2798(4)$	-104(8)	5 209(5)
C(11)	$1476(4)$	$2798(9)$	$4599(7)$	C(38)	$2784(4)$	248(8)	5 979(5)
C(12)	452(5)	511(9)	$3113(6)$	C(39)	$3168(4)$	-278(8)	$6589(5)$
C(13)	9(5)	-315(9)	$3225(6)$	C(40)	3 567(4)	-1156(8)	6 431(5)
C(14)	-512(5)	-462(9)	2 665(6)	C(41)	3 582(4)	-1 507(8)	5 662(5)
C(15)	-592(5)	217(9)	1995 (6)	C(42)	$5335(20)$	-2001(33)	689(23)
C(16)	-149(5)	1 043(9)	$1883(6)$	C(43)	4745 (32)	-401(63)	$1118(47)$
C(17)	373(5)	1 189(9)	2 443(6)	C(44)	5 205(26)	-750(40)	1 682(31)
C(18)	$1217(5)$	-376(10)	4 477(5)	C(45)	$5651(21)$	-901(37)	$1259(30)$

ively and the significant best mean planes in the structures are presented in Table 6. The packing of the molecules in the two compounds are shown in Figures 3 and 4.
In each compound the co-ordination around the uranium is a distorted octahedron with the two oxygen atoms of the $\mathrm{PPh}_{3} \mathrm{O}$ and $\mathrm{P}\left(\mathrm{NMe}_{2}\right)_{3} \mathrm{O}$ ligands respectively in cis positions. The cp ligand, considered in these complexes as occupying a single co-ordination position, is trans with respect to one
oxygen ligand molecule, and three chlorine atoms complete the octahedron in mer positions.
The best mean planes passing through $\mathrm{Cl}(1), \mathrm{Cl}(2), \mathrm{Cl}(3)$, and $O(2)$ show that the deviations of the atoms from this plane (here identified as equatorial plane) are between 0.055 and $-0.050 \AA$ for (1) and from 0.046 to $-0.040 \AA$ for (2). The deviation of the uranium atom is $0.414 \AA$ on the opposite side of the plane to $\mathrm{O}(1)$ in (1); and the uranium atom is in

Table 3. Atomic co-ordinates $\left(\times 10^{4}\right)$ with e.s.d.s in parentheses for (2)

Atom	\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	Atom	x	y	z
U	$1614(0)$	$3779(0)$	$4868(0)$	$\mathrm{C}(3)$	$6266(12)$	$3837(3)$	$7897(13)$
$\mathrm{Cl}(1)$	$1498(3)$	$3171(1)$	$2955(3)$	$\mathrm{C}(4)$	$7595(11)$	$3197(4)$	$7952(16)$
$\mathrm{Cl}(2)$	$1151(3)$	$3255(1)$	$6830(3)$	$\mathrm{C}(5)$	$4686(11)$	$2797(3)$	$8692(9)$
$\mathrm{Cl}(3)$	$2645(4)$	$4382(1)$	$6811(3)$	$\mathrm{C}(6)$	$3490(11)$	$2492(3)$	$6348(11)$
$\mathrm{O}(1)$	$3841(7)$	$3525(2)$	$5716(7)$	$\mathrm{C}(7)$	$5480(10)$	$4427(4)$	$3969(11)$
$\mathrm{P}(1)$	$4926(3)$	$3192(1)$	$6270(3)$	$\mathrm{C}(8)$	$5344(12)$	$4539(4)$	$1431(13)$
$\mathrm{N}(1)$	$5331(8)$	$2983(2)$	$4889(8)$	$\mathrm{C}(9)$	$2080(13)$	$5001(3)$	$307(11)$
$\mathrm{N}(2)$	$6246(7)$	$3421(2)$	$7420(9)$	$\mathrm{C}(10)$	$1946(12)$	$5054(3)$	$2794(10)$
$\mathrm{N}(3)$	$4503(7)$	$2798(2)$	$7124(8)$	$\mathrm{C}(11)$	$1005(10)$	$4024(4)$	$-226(9)$
$\mathrm{O}(2)$	$2601(7)$	$4167(2)$	$3388(7)$	$\mathrm{C}(12)$	$3328(12)$	$3720(3)$	$303(10)$
$\mathrm{P}(2)$	$2942(3)$	$4334(1)$	$2066(3)$	$\mathrm{C}(13)$	$-503(10)$	$4365(3)$	$4485(13)$
$\mathrm{N}(4)$	$4642(7)$	$4379(2)$	$2476(7)$	$\mathrm{C}(14)$	$-916(11)$	$4024(4)$	$5154(14)$
$\mathrm{N}(5)$	$2068(7)$	$4773(2)$	$1626(7)$	$\mathrm{C}(15)$	$-1226(10)$	$3695(4)$	$4184(17)$
$\mathrm{N}(6)$	$2490(7)$	$4063(2)$	$600(7)$	$\mathrm{C}(16)$	$-1011(11)$	$3834(4)$	$2899(14)$
$\mathrm{C}(1)$	$5147(11)$	$3217(3)$	$3541(10)$	$\mathrm{C}(17)$	$-582(10)$	$4237(4)$	$3091(13)$
$\mathrm{C}(2)$	$6091(15)$	$2594(4)$	$4962(14)$				

Figare 1. View of the asymmetric unit $\left[\mathrm{U}(\mathrm{cp}) \mathrm{Cl}_{3}\left(\mathrm{PPh}_{3} \mathrm{O}\right)_{2}\right]$-thf down c

Figure 2. Perspective view of the $\left[\mathrm{U}(\mathrm{cp}) \mathrm{Cl}_{3}\left\{\mathrm{P}\left(\mathrm{NMe}_{2}\right)_{3} \mathrm{O}\right\}_{2}\right]$ molecule
the same situation in (2) with a deviation from its equatorial plane of $0.362 \AA$. In both cases $\mathrm{Cl}(1), \mathrm{Cl}(2), \mathrm{Cl}(3), \mathrm{O}(2)$, and U form an ' umbrella', open in the direction of the neutral ligand $\mathrm{PPh}_{3} \mathrm{O}$ in (1) and $\mathrm{P}\left(\mathrm{NMe}_{2}\right)_{3} \mathrm{O}$ in (2) because of the presence trans to $O(1)$ of the bulky cp ligand which is parallel in both cases to the appropriate equatorial plane [within 1° in (1) and 3° in (2)].

Some selected geometrical parameters in parent octahedral compounds are compared in Table 7 from which it can be seen that the $\mathrm{U}-\mathrm{O}$ bond distances range from 2.23(1) \AA in $\left[\mathrm{UCl}_{4}\left\{\mathrm{P}\left(\mathrm{NMe}_{2}\right)_{3} \mathrm{O}\right\}_{2}\right]^{2}$ to $2.312(8) \AA$ in $\left[\mathrm{U}(\mathrm{cp}) \mathrm{Cl}_{3}\left(\mathrm{PPh}_{3} \mathrm{O}\right)_{2}\right]$; the larger values are in the compounds in which a chlorine atom is replaced by a cp ligand. In particular in the case of $\left[\mathrm{U}(\mathrm{cp}) \mathrm{Cl}_{3}\left(\mathrm{PPh}_{3} \mathrm{O}\right)_{2}\right]$ the $\mathrm{U}-\mathrm{O}$ bond trans to cp [2.258(9) \AA] is significantly shorter with respect to the equatorial $\mathrm{U}^{-\mathrm{O}}$ bond [2.312(8) \AA], but this is probably due to steric and packing effects. The presence of the cp ligand also affects the $\mathrm{U}-\mathrm{Cl}$ bond distances, which are also longer with respect to those of the parent tetrachloro-compound, and the angles subtended at the uranium atom of the substituents in the equatorial

Figure 3. Packing of $\left[\mathrm{U}(\mathrm{cp}) \mathrm{Cl}_{3}\left(\mathrm{PPh}_{3} \mathrm{O}\right)_{2}\right]$ thf viewed down the b axis

Table 4. Distances (\AA) and angles $\left({ }^{\circ}\right)$ with e.s.d.s in parentheses for $\left[\mathrm{U}(\mathrm{cp}) \mathrm{Cl}_{3}\left(\mathrm{PPh}_{3} \mathrm{O}\right)_{2}\right] \cdot$ thf

(a) Uranium environment							
$\mathrm{U}-\mathrm{Cl}(1)$	2.652(4)		U-C(1)	2.78(2)		$\mathrm{C}(1)-\mathrm{C}(2)$	$1.38(3)$
$\mathrm{U}^{-\mathrm{Cl}}$ (2)	$2.651(4)$		U - $\mathrm{C}(2)$	2.76(2)		$\mathrm{C}(2)-\mathrm{C}(3)$	1.44(3)
$\mathrm{U}-\mathrm{Cl}(3)$	2.657(4)		$\mathrm{U}-\mathrm{C}(3)$	2.73(2)		$\mathrm{C}(3)-\mathrm{C}(4)$	1.40(3)
U-O(1)	2.258(9)		$\mathrm{U}^{-\mathrm{C}}$ (4)	2.74(2)		$\mathrm{C}(4)-\mathrm{C}(5)$	1.38(2)
$\mathrm{U}-\mathrm{O}(2)$	2.312(8)		$\mathrm{U}-\mathrm{C}(5)$	2.74(2)		$\mathrm{C}(5)-\mathrm{C}(1)$	1.40(3)
$\mathbf{U}^{-} \mathrm{M}^{*}$	2.483		U-C (mean)	2.75		$\mathrm{C}^{-} \mathrm{C}$ (mean)	1.40
$\mathrm{Cl}(1)-\mathrm{U}-\mathrm{O}(1)$	(1) 81.5(2)		$\mathrm{Cl}(1)^{-} \mathrm{U}^{-} \mathrm{O}(2)$	162.4(2)		$\mathrm{Cl}(1)-\mathrm{U}-\mathrm{Cl}(2)$	91.1(1)
$\mathrm{Cl}(2)-\mathrm{U}^{-} \mathrm{O}(1)$	(1) 81.2(2)		$\mathrm{Cl}(2)-\mathrm{U}^{-} \mathrm{O}(2)$	81.5(2)		$\mathrm{Cl}(1)-\mathrm{U}-\mathrm{Cl}(3)$	94.9(1)
$\mathrm{Cl}(3)-\mathrm{U}-\mathrm{O}(1)$	(1) 78.9(2)		$\mathrm{Cl}(3)-\mathrm{U}-\mathrm{O}(2)$	86.7(2)		$\mathrm{Cl}(2)-\mathrm{U}-\mathrm{Cl}(3)$	158.1(1)
$\mathrm{M}^{-} \mathrm{U}-\mathrm{O}(1)$	177.9(2)		$\mathrm{M}^{-} \mathrm{U}-\mathrm{O}(2)$	97.9(2)		$\mathrm{O}(1)-\mathrm{U}-\mathrm{O}(2)$	81.6(3)
M ${ }^{-}{ }^{-} \mathrm{Cl}(1)$	99.2(1)		$\mathrm{M}^{-} \mathrm{U}^{-\mathrm{Cl}}(2)$	100.8(2)		$\mathrm{M}^{-} \mathrm{U}-\mathrm{Cl}(3)$	99.1(1)
(b) Triphenylphosphine oxide							
$\begin{array}{ll} \mathbf{P}(1)-\mathrm{O}(1) & 1 \\ \mathrm{P}(1)-\mathrm{C}(6) & 1 \end{array}$	1.527(10)	$\mathrm{P}(1)^{-} \mathrm{C}(12)$	1.801(11)	$\mathrm{P}(2)-\mathrm{O}(2)$	1.508(9)	$\mathrm{P}(2)-\mathrm{C}(30)$	1.777(12)
	1.778(12)	$\mathrm{P}(1)-\mathrm{C}(18)$	1.777(11)	$\mathrm{P}(2)-\mathrm{C}(24)$	1.792(9)	$\mathrm{P}(2)-\mathrm{C}(36)$	1.780(9)
	$\mathrm{U}-\mathrm{O}(1)^{-\mathrm{P}}(1)$		165.9(5)	$\mathrm{U}^{-} \mathrm{O}$	(2)	167.9(6)	
	$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{C}(6)$		108.6(5)	$\mathrm{O}(2)$	- C (24)	109.2(5)	
	$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{C}(12)$		112.7(5)	$\mathrm{O}(2)$	-C(30)	$111.4(5)$	
	$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{C}(18)$		109.1(5)	$\mathrm{O}(2)$	- C (36)	$111.1(5)$	
	$\mathrm{C}(6)^{-\mathrm{P}}(1)^{-\mathrm{C}}(12)$		108.1(5)	C(24)	- $\mathrm{C}(30)$	108.3(4)	
	$\mathrm{C}(6)^{-\mathrm{P}}(1)^{-\mathrm{C}}(18)$		111.0(5)	C(24)	-C(36)	$111.2(5)$	
	$\mathrm{C}(12)^{-\mathrm{P}}(1)^{-\mathrm{C}}(18)$		107.4(5)	C(30))-C(36)	105.6(5)	

${ }^{*} \mathrm{M}=$ centre of cyclopentadienyl ring.

Figure 4. Packing of $\left[\mathrm{U}(\mathrm{cp}) \mathrm{Cl}_{3}\left\{\mathrm{P}\left(\mathrm{NMe}_{2}\right)_{3} \mathrm{O}\right\}_{2}\right]$ viewed down the c axis
plane. In fact the deviations from linearity of the trans substituents are of the order of 20°.
The cis disposition of the phosphine oxide ligands in the complex $\left[\mathrm{U}(\mathrm{cp}) \mathrm{Cl}_{3}\left(\mathrm{PPh}_{3} \mathrm{O}\right)_{2}\right]$ is similar to that reported ${ }^{1}$ for $\left[\mathrm{UCl}_{4}\left(\mathrm{PPh}_{3} \mathrm{O}\right)_{2}\right]$, although in the latter the cis octahedral arrangement involves a significant graphite-type interaction between one phenyl ring of each molecule of the ligand in the complex with another phenyl ring from each of two adjacent molecules of the complex, a result ascribed to improved packing of the molecules of the complex in the crystal. ${ }^{1}$ However, the cis arrangement of the $\mathrm{P}\left(\mathrm{NMe}_{2}\right)_{3} \mathrm{O}$ ligands in the structure of $\left[\mathrm{U}(\mathrm{cp}) \mathrm{Cl}_{3}\left\{\mathrm{P}\left(\mathrm{NMe}_{2}\right)_{3} \mathrm{O}\right\}_{2}\right]$ is unexpected in view of the trans octahedral geometry reported ${ }^{2}$ for $\left[\mathrm{UCl}_{4}-\right.$ $\left.\left\{\mathrm{P}\left(\mathrm{NMe}_{2}\right)_{3} \mathrm{O}\right\}_{2}\right]$. A cis octahedral geometry has also been reported for the complex $\left[\mathrm{U}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right) \mathrm{Cl}_{3}(\mathrm{thf})_{2}\right]^{11}$ and for the oxygen donor ligands in the analogous indenyl complex $\left[\mathrm{U}\left(\eta^{5}-\mathrm{C}_{9} \mathrm{H}_{7}\right) \mathrm{Br}_{3}\left(\mathrm{PPh}_{3} \mathrm{O}\right)(\mathrm{thf})\right] .^{12}$

The consistent appearance of cis geometry in these complexes, with the requirement for an oxygen donor ligand to be trans to the η^{5}-bonded cyclopentadienyl or indenyl ring, infers that a trans effect, perhaps of the kind which is observed in platinum(II) complexes, is operative in these species. Thus, if
the π-bonded ligands were trans to an electron-withdrawing substituent, such as a halogen atom, then one might expect the metal-ring bond to be weakened, whereas if the π-bonded ligand were trans to an oxygen donor ligand, as in the instances noted above, the metal-ring bond might be reinforced, particularly if there was some degree of interaction between the filled uranium $5 f$ orbitals and the ring π-system. There is, as yet, no evidence to support this view, but other, analogous actinide(Iv) systems are being investigated in an attempt to obtain such evidence.

We have also investigated the consequences of using bulky ligands which would so crowd the $\left[\mathrm{U}(\mathrm{cp}) \mathrm{Cl}_{3} \mathrm{~L}_{2}\right]$ molecule that the adoption of cis geometry would be difficult, if not impossible. The bulky amide ligand $\mathrm{Me}_{3} \mathrm{CCONMe}{ }_{2}$, which forms a trans octahedral bis complex with $\mathrm{UCl}_{4},{ }^{13,14}$ forms ${ }^{15}$ complexes of composition $\left[\mathrm{U}(\mathrm{cp}) \mathrm{X}_{3}\left(\mathrm{Me}_{3} \mathrm{CCONMe}_{2}\right)_{2}\right](\mathrm{X}=$ Cl or Br), but all attempts to recrystallize the chloride complex lead to a mixture of disproportionation products, [$\left.\mathrm{U}(\mathrm{cp})_{3} \mathrm{Cl}\right]$ and $\left[\mathrm{UCl}_{4}\left(\mathrm{Me}_{3} \mathrm{CCONMe}\right)_{2}\right.$]. Similar results have been observed ${ }^{16}$ with $\left[\mathrm{Np}(\mathrm{cp}) \mathrm{Cl}_{3}\left(\mathrm{Me}_{3} \mathrm{CCONMe}\right)_{2}\right.$]. It could be argued from these results that there might be transient formation of the trans form of $\left[\mathrm{M}(\mathrm{cp}) \mathrm{Cl}_{3}\left(\mathrm{Me}_{3} \mathrm{CCONMe}_{2}\right)_{2}\right]$

Table 5. Distances (\AA) and angles $\left({ }^{\circ}\right)$ with e.s.d.s in parentheses for $\left[\mathrm{U}(\mathrm{cp}) \mathrm{Cl}_{3}\left\{\mathrm{P}\left(\mathrm{NMe}_{2}\right)_{3} \mathrm{O}\right\}_{2}\right]$
(a) Uranium environment

$\mathrm{U}-\mathrm{Cl}(1)$	$2.653(3)$
$\mathrm{U}-\mathrm{Cl}(2)$	$2.653(3)$
$\mathrm{U}-\mathrm{Cl}(3)$	$2.677(3)$
$\mathrm{U}-\mathrm{O}(1)$	$2.284(6)$
$\mathrm{U}-\mathrm{O}(2)$	$2.301(7)$
$\mathrm{U}-\mathrm{M}^{*}$	2.491
$\mathrm{Cl}(1)-\mathrm{U}-\mathrm{O}(1)$	$80.5(2)$
$\mathrm{Cl}(2)-\mathrm{U}-\mathrm{O}(1)$	$82.3(2)$
$\mathrm{Cl}(3)-\mathrm{O}-\mathrm{O}(1)$	$82.3(2)$
$\mathrm{M}-\mathrm{U}-\mathrm{O}(1)$	$17.9(2)$
$\mathrm{M}-\mathrm{U}-\mathrm{Cl}(1)$	$98.6(1)$

(b) Hexamethylphosphoramide

$\mathrm{P}(1)-\mathrm{O}(1)$	1.504(7)	$\mathrm{N}(1)-\mathrm{C}(2)$	1.45(1)	$\mathrm{P}(2)-\mathrm{O}(2)$	1.497(6)	$\mathrm{N}(4)-\mathrm{C}(8)$	1.46(1)
$\mathrm{P}(1)-\mathrm{N}(1)$	1.630(7)	$\mathrm{N}(2)-\mathrm{C}(3)$	1.40 (1)	$\mathrm{P}(2)-\mathrm{N}(4)$	$1.631(7)$	$\mathrm{N}(5)-\mathrm{C}(9)$	1.46(1)
$\mathrm{P}(1)-\mathrm{N}(2)$	1.632(7)	N(2)-C(4)	1.48(1)	$\mathrm{P}(2)-\mathrm{N}(5)$	1.644(6)	$\mathrm{N}(5)-\mathrm{C}(10)$	1.47(1)
$\mathrm{P}(1)-\mathrm{N}(3)$	1.622(7)	N(3)-C(5)	1.46(1)	$\mathrm{P}(2)-\mathrm{N}(6)$	1.604(6)	$\mathrm{N}(6){ }^{-} \mathrm{C}(11)$	1.47(1)
$\mathrm{N}(1)-\mathrm{C}(1)$	1.46(1)	$\mathrm{N}(3)-\mathrm{C}(6)$	1.45(1)	$\mathrm{N}(4)-\mathrm{C}(7)$	1.45 (1)	$\mathrm{N}(6)-\mathrm{C}(12)$	1.45 (1)
	$\mathrm{U}-\mathrm{O}(1)-\mathrm{P}(1)$			U-O		161.8(4)	
	$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{N}(1)$			$\mathrm{O}(2)$	N(4)	107.0(2)	
	$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{N}(2)$			$\mathrm{O}(2)$	N(5)	107.0(2)	
	$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{N}(3)$			$\mathrm{O}(2)$	N(6)	118.2(2)	
	$\mathrm{N}(1)-\mathrm{P}(1)-\mathrm{N}(2)$			N(4)	N(5)	115.4(4)	
	$\mathrm{N}(1)-\mathrm{P}(1)-\mathrm{N}(3)$			N(4)	N(6)	106.0(3)	
	$\mathrm{N}(2)-\mathrm{P}(1)-\mathrm{N}(3)$			$\mathrm{N}(5)$	N(6)	103.9(3)	
	$\mathrm{P}(1)-\mathrm{N}(1)-\mathrm{C}(1)$			$\mathrm{P}(2)$	C(7)	121.2(6)	
	$\mathrm{P}(1)-\mathrm{N}(1)-\mathrm{C}(2)$			$P(2)$	C(8)	121.8(7)	
	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(2)$			C (7)	C(8)	112.8(8)	
	$\mathrm{P}(1)-\mathrm{N}(2)-\mathrm{C}(3)$			$\mathrm{P}(2)$	C(9)	121.1(6)	
	$\mathrm{P}(1)-\mathrm{N}(2)-\mathrm{C}(4)$			$P(2)$	C(10)	118.7(5)	
	$\mathrm{C}(3)-\mathrm{N}(2)-\mathrm{C}(4)$			C(9)	C(10)	112.0(7)	
	$\mathrm{P}(1)-\mathrm{N}(3)-\mathrm{C}(5)$			$\mathrm{P}(2)$	C(11)	120.5(6)	
	$\mathrm{P}(1)-\mathrm{N}(3)-\mathrm{C}(6)$			$\mathrm{P}(2)$	C(12)	123.0(6)	
	$\mathrm{C}(5)-\mathrm{N}(3)-\mathrm{C}(6)$			C(11)	-C(12)	112.1(8)	

* $\mathbf{M}=$ centre of cyclopentadienyl ring.

Table 6. Least-squares planes * with deviations (\AA) of the relevant atoms in square brackets. The equation of a plane in direct space is given by $p X+q Y+r Z=s$

Compound (1)	p	q	r	s
Plane 1: C(1)-C(5)	17.3947	-0.4490	- 12.1292	3.4949
$\begin{aligned} & {[C(1) 0.021, C(2)-0.005, C(3)-0.014, C(4) 0.027} \\ & \mathbf{C (5) - 0 . 0 2 9]} \end{aligned}$				
Plane 2: $\mathrm{Cl}(1), \mathrm{Cl}(2), \mathrm{Cl}(3), \mathrm{O}(2)$	17.1837	-0.3619	-12.3321	0.5015
$\begin{aligned} & {[\mathrm{Cl}(1) 0.040, \mathrm{Cl}(2)-0.050, \mathrm{Cl}(3)-0.046, \mathrm{O}(2) 0.055,} \\ & \mathrm{U} 0.414, \mathrm{O}(1)-1.844] \end{aligned}$				
Compound (2)				
Plane 1: C(13)-C(17)	-8.9468	9.8187	-0.4349	4.5439
$\begin{aligned} & {[C(13)-0.003, C(14) 0.003, C(15)-0.001} \\ & C(16)-0.001, C(17) 0.003] \end{aligned}$				
Plane 2: $\mathrm{Cl}(1), \mathrm{Cl}(2), \mathrm{Cl}(3), \mathrm{O}(2)$	-8.7003	10.8641	-0.8228	1.9390
$\begin{aligned} & {[\mathrm{Cl}(1)-0.040, \mathrm{Cl}(2), 0.034, \mathrm{Cl}(3)-0.040,} \\ & \mathrm{O}(2) 0.046, \mathrm{U} 0.362, \mathrm{O}(1)-1.921] \end{aligned}$				

*Angles between planes 1 and 2 are 1° for compound (1) and 3° for compound (2).
($M=U$ or $N p$) in these cases, and that the metal-ring bond is so weakened by the electron-withdrawing effect of the Cl atom trans to the ring as to facilitate disproportionation. On the other hand, all complexes of the type [$\mathrm{U}(\mathrm{cp}) \mathrm{Cl}_{3} \mathrm{~L}_{2}$] are
kinetically labile, ${ }^{17}$ so that disturbance of the equilibrium in disproportionation reactions will depend on which of the species involved in the equilibrium in solution has the largest crystal energy, because removal of one product by precipit-

Table 7. Comparison between some geometrical parameters in related uranium compounds

Stereochemistry	$\underset{c i s}{\left[\mathrm{UCl}_{4}\left(\mathrm{PPh}_{3} \mathrm{O}\right)_{2}\right]^{a}}$	$\begin{gathered} {\left[\mathrm{U}(\mathrm{cp}) \mathrm{Cl}_{3}\left(\mathrm{PPh}_{3} \mathrm{O}\right)_{2}\right]^{b}} \\ \text { cis } \end{gathered}$	$\underset{\text { trans }}{\left.\left[\mathrm{UCl}_{4}\left\{\mathrm{PM}_{2}\right)_{3} \mathrm{O}\right\}_{2}\right]^{c}}$	$\begin{gathered} {\left[\mathrm { U } (\mathrm { cp }) \mathrm { Cl } _ { 3 } \left\{\mathrm{P}^{3}\left(\mathrm{NMe}_{2}\right)_{3^{-}}\right.\right.} \\ \left.\mathrm{O}\}_{2}\right]^{b} \\ c i s \end{gathered}$	$\underset{\left.\left(\mathrm{Me}_{3} \mathrm{CCONMe}_{4}\right)_{2}\right]^{\text {trans }}}{ }$
$\mathrm{U}-\mathrm{O}(1) / \AA{ }_{\text {® }}$	2.242(7)	2.258(9)	2.23(1)	2.284(6)	2.246 (5)
$\mathrm{U}-\mathrm{O}(2) / \AA$	-	$2.312(8)$	-	$2.301(7)$	-
$\mathrm{U}-\mathrm{Cl}(1) / \AA$	$2.609(4)$	2.652(4)	$2.615(6)$	2.653(3)	2.609(2)
$\mathrm{U}-\mathrm{Cl}(2) / \AA$	2.626(3)	2.651(4)	2.614(4)	$2.653(3)$	2.614(2)
$\mathrm{U}-\mathrm{Cl}(3) / \AA$	-	2.657(4)	-	2.677(3)	
$\mathbf{U - M}{ }^{\mathbf{e}}$ /	-	2.483	-	2.491	-
$\mathrm{Cl}^{-} \mathrm{U}-\mathrm{Cl}($ trans $){ }^{\circ}$	168.7(1)	158.1(1)	180	160.5(1)	180
$\mathrm{Cl}^{-} \mathrm{U}-\mathrm{O} /{ }^{\circ}$	174.3(2)	162.4	-	165.0(2)	-

${ }^{a}$ Ref. 1. ${ }^{b}$ This work. ${ }^{c}$ Ref. 2. ${ }^{d}$ Ref. 13. ${ }^{e} \mathrm{M}=$ centre of cyclopentadienyl ring.
ation will disturb the equilibrium appropriately. Thus the high crystal energy of $\left[\mathrm{UCl}_{4}\left\{\mathrm{P}\left(\mathrm{NMe}_{2}\right)_{3} \mathrm{O}\right\}_{2}\right]$ may provide the driving force for the disproportionation, in which case the formation of either [U(cp)Cl $\left\{\mathrm{Cl}_{3}\left(\mathrm{NMe}_{2}\right)_{3} \mathrm{O}\right\}_{2}$] or $\left[\mathrm{U}(\mathrm{cp}) \mathrm{Cl}_{3}\left\{\mathrm{P}\left(\mathrm{NMe}_{2}\right)_{3} \mathrm{O}\right\}\right.$ (solvent)] would be unfavourable. It is interesting to note that in the indenyl complexes $\left[\mathrm{M}\left(\eta^{5}-\mathrm{C}_{9} \mathrm{H}_{7}\right) \mathrm{X}_{3} \mathrm{~L}_{2}\right.$] $(\mathrm{M}=$ Th or U ; $\mathrm{X}=\mathrm{Cl}$ or Br), the bis $-\mathrm{PPh}_{3} \mathrm{O}$ complexes are relatively unstable with respect to disproportionation to [$\mathrm{M}\left(\eta^{5}-\mathrm{C}_{9} \mathrm{H}_{7}\right)_{3} \mathrm{X}$] and [$\mathrm{MX}_{4} \mathrm{~L}_{2}$], the latter being very insoluble in all of the organic solvents used in the reported work. ${ }^{12}$

References

1 G. Bombieri, D. Brown, and R. Graziani, J. Chem. Soc., Dalton Trans., 1975, 1893.
2 J. F. de Wet and S. F. Darlow, Inorg. Nucl. Chem. Lett., 1971, 7, 1041.

3 G. Bombieri, G. De Paoli, A. Del Pra, and K. W. Bagnall, Inorg. Nucl. Chem. Lett., 1978, 14, 359.
4 F. Benetollo, G. Bombieri, G. De Paoli, and P. Zanella, Proc. 9th Int. Conf. Organomet. Chem., Dijon (France), 1979, p. 63.
5 A. C. T. North, D. C. Phillips, and F. Mathews, Acta Crystallogr., Sect. A, 1968, 24, 351.
6 D. T. Cromer and D. Liberman, J. Chem. Phys., 1970, 53, 1891.

7 'International Tables for X-Ray Crystallography,’ 2nd edn., Kynoch Press, Birmingham, 1974, vol. 4, p. 101.
8 D. T. Cromer and J. B. Mann, Acta Crystallogr., Sect. A, 1968, 24, 321.
9 R. F. Stewart, J. Chem. Phys., 1965, 42, 3175.
10 G. Sheldrick, SHELX 76 system of crystallographic computer programs, University of Cambridge, 1976.
11 R. D. Ernst, W. J. Kennelly, C. S. Day, V. W. Day, and T. J. Marks, J. Am. Chem. Soc., 1979, 101, 2656.
12 J. Goffart, J. Piret-Meunier, and G. Duyckaerts, Inorg. Nucl. Chem. Lett., 1980, 16, 233.
13 F. Benetollo, G. Bombieri, G. De Paoli, and P. Zanella, ' $10^{\text {ème }}$ Journées des Actinides,' B. Johansson and A. Rosengren, Stockholm, Sweden, 1980, p. 37.
14 K. W. Bagnall, J. G. H. du Preez, L. Bonner, H. Copper, and G. Segal, J. Chem. Soc., Dalton Trans., 1973, 2682.

15 K. W. Bagnall, J. Edwards, and A. C. Tempest, J. Chem. Soc., Dalton Trans., 1978, 295.
16 K. W. Bagnall, M. J. Plews, and D. Brown, unpublished work.
17 K. W. Bagnall, 'Organometallics of the f-elements,' Proc. N.A.T.O. Advanced Study Institutes, 1978, D. Reidel, Dordrecht, 1979, p. 221.

[^0]: \dagger Supplementary data available (No. SUP 23725, 52 pp .): thermal parameters, H -atom positions, observed and calculated structure factors. See Instructions for Authors, J. Chem. Soc., Dalton Trans., 1984, Issue 1, pp. xvii-xix.

